
Chapter 6

[141]

The problem with this method of using an object is that there is no flexibility, and the
objects are tightly coupled with their class types. For example, we might need to use
the Product object in different cases, as we might have a ProductManager class that
will create and return a product to be added in an OrderLineItem object (this class
will return an appropriate product object based on the type of product a customer
has ordered). The following is a sample code of such a ProductManager class that
returns a BeautyProduct object:

public class ProductManager
{
 //misc. methods to handle products
//
public BeautyProduct OrderProduct()
 {
BeautyProduct bp = new BeautyProduct();
//set bp properties
bp.OrderDate = Datetime.Now;
//reset the product count in the inventory as this product has been
//ordered
bp.ResetInventory();
return bp;
 }
}

In the above code sample, we have the OrderProduct() method that creates a new
instance of BeautyProduct, and returns it to the consuming class (which might use
this object to perform operations on it, as in an Order class).

We will not be focusing on other methods in the Product/
ProductManager class that are related to handling and applying
business logic related methods and properties, as our main focus is to
understand the approach to solve problems in a better way by using
design patterns!

The problem with this way of programming is that it makes our application too
rigid, because to create another type of product object, say ElectronicProduct,
we need to write another OrderProduct method in the ProductManager class. The
ProductManager class returns an object of type, ElectronicProduct, which looks
something like this:

public ElectronicProduct OrderEletronicProduct()
 {
ElectronicProduct ep = new ElectronicProduct ();
//set ep properties
ep.OrderDate = Datetime.Now;

Design Patterns

[142]

//reset the product count in the inventory as this product has been
//ordered
ep.ResetInventory();
return ep;
}

So for each type of product, we need to add multiple order methods with different
return signatures, which is quite messy. Also, in future, if we add a new type of
product, we need to open our ProductManager class and modify it to make sure it
can create and return the new product type. So this approach makes our code very
rigid, inflexible and open to modifications each time there is a change. To avoid
this, we can use Polymorphism and program to interfaces instead of using the
concrete classes.

So what does 'programming to interfaces' mean? We create an object using the
interface/super class as the type instead of the concrete classes. This means:

BeautyProduct bp = new BeautyProduct();

becomes

IProduct bp = new BeautyProduct();

Note that the type of the bp object is now the interface, making it possible for
us to switch to different concrete types during code execution. This is known as
Runtime polymorphism. Let us see how we can use this approach to make our
ProductManager class better:

public class ProductManager
{

public IProduct OrderProduct()
 {

//misc. methods
IProduct bp = new BeautyProduct();
//set bp properties
bp.OrderDate = Datetime.Now;
//reset the product count in the inventory as this product has been
//ordered
bp.ResetInventory();
 return bp;
 }
}

